
Plan for Integrating TOUCH Modules in
CS516 Parallelization of Programs

Vishwesh Jatala
Assistant Professor

Department of EECS
Indian Institute of Technology Bhilai

1

vishwesh@iitbhilai.ac.in

1

2

Course Overview

■ Parallelization of Programs
■ Senior UG/PG Level
■ 6 credit course ~ 40 hours class
■ August - November end

2

3

Course Overview: Original

■ Introduction to parallelization;
■ Performance; Amdahl's law;
■ Techniques for extracting parallelism from

sequential programs
■ Compile-time parallelization
■ Runtime parallelization
■ Synchronization

❑ Scheduling techniques;
❑ Parallelization for cache performance;

3

4

Course Overview: Integration

■ Introduction to parallelization;
■ Performance; Amdahl's law;
■ Touch Modules D1, C2, and B2

❑ Parallel Hardwares -- GPUs.
❑ Introduction to CUDA programming
❑ Google Colab
❑ Instruction Execution in GPUs

■ Techniques for extracting parallelism from sequential programs
■ Compile-time parallelization
■ Runtime parallelization
■ Synchronization

❑ Scheduling techniques;
❑ Parallelization for cache performance;

4

5

Motivation

■ For many decades, the single core processors
were popular
❑ Instruction-level parallelism
❑ Core clock frequency
❑ Moore’s law

■ Mid-to late-1990s - power wall
❑ Power constraints
❑ Heat dissipation

■ Multicore processors, accelerators, such as
GPUs.

5

6

Why GPUs?

■ Multicore processors
❑ Task level parallelism
❑ Graphics rendering is

computationally
expensive

❑ Not efficient for
graphics applications

6Images Source: Internet

7

Graphics Processing Units

■ The early GPU designs
❑ Specialized for graphics

processing only
❑ Exhibit SIMD execution
❑ Less programmable

7

NVIDIA GeForce 256

Images Source: Internet

■ In 2007, fully
programmable GPUs
❑ CUDA released

8

Single-core CPU vs Multi-core vs GPU

Core

L1 Cache

L2 Cache

DRAM

Single-core CPU

Core1

L1 Cache

L2 Cache

DRAM

Multi-core CPU

Core2

L1 Cache

Core3

L1 Cache

Core4

L1 Cache

9

L2 Cache

Single-core CPU vs Multi-core vs GPU
Streaming Multiprocessor

Global Memory

L1 Cache

Streaming Multiprocessor

L1 Cache

Streaming Multiprocessor

L1 Cache

10

NVIDIA Volta GV100

10
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf

11

CPU vs GPU

11

Chip to chip comparison of peak memory bandwidth in GB/s and peak double
precision gigaflops for GPUs and CPUs since 2008.

https://www.nextplatform.com/2019/07/10/a-decade-of-accelerated-computing-augurs-well-for-gpus

12

GPU Applications

GPU

Media and Entertainment

Security

Medical ImagingComputational Finance

Deep Learning and
Machine Learning

Education & Research
Super Computing

Climate Modeling

CFD

Reference: https://www.nvidia.com/
Images Source: Internet 12

https://www.nvidia.com/

13

Programming for GPUs

13

14

Programming Models

■ CUDA (Compute Unified Device Architecture)
❑ Supports NVIDIA GPUs
❑ Extension of C programming language
❑ Popular in academia

14

15

Introduction to CUDA Programming

15

Device Memory

Memory

CPU

SM SM SM(2) Kernel

GPU

(1) CPU to GPU
 Data transfer

(3) GPU to CPU
 Data transfer

Simple Example: Touch Module Example

16

__global__ void Vector_Add(float a, float b, float c){
 /* Compute index i based on thread id */
 c[i] = a[i] + b[i];
}
int main() {

 h_a = malloc(..)//host array
 cudaMalloc(d_a,….) //device

 /* Initialize h_a, h_b, h_c */

 cudaMemcpy(d_a, h_a, cudaMemcpyHostToDevice)
//Similarly do for d_b, and d_c
 Vector_Add<<<ThreadConfig>>> (d_a, d_b, d_c);

 cudaMemcpy(h_c, d_c, cudaMemcpyDeviceToHost)
 process(h_c);
 cudaFree(d_a);cudaFree(d_b);
cudaFree(d_c);
 free(h_a);

}

CPU to GPU
Data transfer

GPU to CPU
Data transfer

Invoke Kernel

Compute Kernel

17

Threadblock configuration: Touch Module Example

17

 Vector_Add<<<ThreadBlocks, Threads> (d_a);

■ Thread block configuration
❑ User choice
❑ Depends on problem size

■ Problem size = 32768 (1024 * 32)
❑ Threadblocks = 32, No of threads/thread block = 1024
❑ Threadblocks = 128, No of threads/thread block = 256

CUDA thread block occupancy:
https://docs.nvidia.com/cuda/cuda-occupancy-calculator/index.ht
ml

18

Demo using Colab on Touch based Example

18

19

Evaluation

■ Evaluation scheme:
❑ Tierce exam-1: ~12.5%
❑ Tierce exam-2: ~12.5%
❑ Programming assignments (4-5): ~20% (D1 and C2

Modules)
■ CUDA Programming assignments: Similar to Matrix multiplication in

Google Colab
❑ Projects: ~40% (B2 Module)

■ Ideas: Parallelizing several algorithms for GPUs using CUDA.
❑ Community detection
❑ Graph mining applications
❑ Deep learning
❑ SpMV and SPMM.

❑ Quiz: ~5%

20

Thank You!

20

