Plan for Integrating TOUCH Modules in
CS516 Parallelization of Programs

Vishwesh Jatala
Assistant Professor

Department of EECS
Indian Institute of Technology Bhilai

£ %%
. . vishwesh@iitbhilai.ac.1in
%”o @5

Course Overview

= Parallelization of Programs

= Senior UG/PG Level

= O credit course ~ 40 hours class
= August - November end

Course Overview: Original

= Introduction to parallelization;

=« Performance; Amdahl's law;

= lechniques for extracting parallelism from
sequential programs

=« Compile-time parallelization

= Runtime parallelization

= Synchronization

o Scheduling techniques;
o Parallelization for cache performance;

Course Overview: Integration

- Introduction to parallelization;
= Performance; Amdahl's law;
= Touch Modules D1, C2, and B2
a Parallel Hardwares -- GPUs.
a Introduction to CUDA programming
a Google Colab
a Instruction Execution in GPUs
= Techniques for extracting parallelism from sequential programs
- Compile-time parallelization
- Runtime parallelization

= Synchronization

2 Scheduling techniques;
. Parallelization for cache performance;

Motivation

=« For many decades, the single core processors

were popular
2 Instruction-level parallelism
o Core clock frequency
2 Moore’s law
« Mid-to late-1990s - power wall
2 Power constraints
2 Heat dissipation

=« Multicore processors, accelerators, such as
GPUs.

‘ Why GPUs?

Multi-core Processor = Multicore processors

pe— W a Task level parallelism
2 o Graphics rendering is
s i computationally
expensive
o Not efficient for
graphics applications

Images Source: Internet

Graphics Processing Units

« [he early GPU designs

o Specialized for graphics
processing only
o Exhibit SIMD execution

o Less programmable

« In 2007, fully

programmable GPUs
o CUDA eleased

NVIDIA GeForce 256

<A NVIDIA.

CUDA.

Images Source: Internet

Single-core CPU vs Multi-core vs GPU

Core1 Core2
Core L1 Cache L1 Cache
L1 Cache Core3 Core4
L2 Cache L1 Cache L1 Cache

Single-core CPU

Multi-core CPU

Single-core CPU vs Multi-core vs GPU

Streaming Multiprocessor Streaming Multiprocessor Streaming Multiprocessor

/IIIIII\ /IIIIII\ /IIIIII\

k L1 Cache / K L1 Cache / k L1 Cache /

NVIDIA Volta GV100

PCI Express 3.0 Host Interface

Memory Controller
1@jlonuon Aoway

Memory Controller
JRjjonuen Asowasy

onuon Kowaeyy

3
3
S
o
o
:
]
=

Memory Controller
18[00 Lioway

https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf

CPU vs GPU

Peak Memory Bandwidth (GB/s) Peak Double Precision (GFLOPs)

1600 - GPU 16000
1400 s CPU 14000
1200 12000
1000 10000
800 8000
600 6000
400 4000
200 2000

. / 0

2006 2008 2010 2012 2014 2016 2018 2020 2022 2006 2008 2010 2012 2014 2016 2018 2020 2022

Chip to chip comparison of peak memory bandwidth in GB/s and peak double
precision gigaflops for GPUs and CPUs since 2008.

https://www.nextplatform.com/2019/07/10/a-decade-of-accelerated-computing-augurs-well-for-gpus
1"

GPU Applications

CFD

Education & Research
Super Computing

— GPU

Deep Learning and
Machine Learning

_ _ = -~ Climate Modeling
Computational Finance Medical Imaging

Reference: https://www.nvidia.com/
Images Source: Internet 12

https://www.nvidia.com/

Programming for GPUs

13

Programming Models

m CUDA (Compute Unified Device Architecture)
1 Supports NVIDIA GPUs
1 Extension of C programming language
1 Popular in academia

14

Introduction to CUDA Programming

GPU

(2) Kernel @SM SM| | SM

Device Memory

(1) CPU to GPU (3) GPU to CPU
Data transfer Data transfer

Memory

CPU

Simple Example: Touch Module Example

__global__ void Vector_Add(float a, float b, float c){ -
/* Compute index i based on thread id */ Compute Kernel

c[i] = ali] + bli;

}

int main() {

h_a = malloc(..)//host array
cudaMalloc(d_a,....) //device

[* Initialize h_a, h_b, h_c*/

cudaMemcpy(d_a, h_a, cudaMemcpyHostToDevicejg- CPU to GPU
/ISimilarly do for d_b, and d_c Data transfer
Vector_Add<<<ThreadConfig>>> (d_a, d_b, d_c); < Invoke Kernel
cudaMemcpy(h_c, d_c, cudaMemcpyDeviceToHost)‘ GPU to CPU
process(h_c);

cudaFree(d_a);cudaFree(d_b); Data transfer
cudaFree(d_c);

free(h_a);

16

Threadblock configuration: Touch Module Example

Vector_Add<<<ThreadBlocks, Threads> (d_a);

= Thread block configuration
a2 User choice
o Depends on problem size

= Problem size = 32768 (1024 * 32)
o Threadblocks = 32, No of threads/thread block = 1024
o Threadblocks = 128, No of threads/thread block = 256

CUDA thread block occupancy:
https://docs.nvidia.com/cuda/cuda-occupancy-calculator/index.ht
ml

17

Demo using Colab on Touch based Example

18

Evaluation

= Evaluation scheme:
o Tierce exam-1: ~12.5%
o Tierce exam-2: ~12.5%
a2 Programming assignments (4-5): ~20% (D1 and C2
Modules)

« CUDA Programming assignments: Similar to Matrix multiplication in
Google Colab

o Projects: ~40% (B2 Module)

« l|deas: Parallelizing several algorithms for GPUs using CUDA.
o Community detection
o Graph mining applications
o Deep learning
o SpMV and SPMM.

2 Quiz: ~5%

19

Thank You!

20

