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Course Overview

■ Parallelization of Programs
■ Senior UG/PG Level
■ 6 credit course ~ 40 hours class
■ August - November end
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Course Overview: Original

■ Introduction to parallelization; 
■ Performance; Amdahl's law; 
■ Techniques for extracting parallelism from 

sequential programs 
■ Compile-time parallelization 
■ Runtime parallelization 
■ Synchronization 

❑ Scheduling techniques; 
❑ Parallelization for cache performance; 
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Course Overview: Integration

■ Introduction to parallelization; 
■ Performance; Amdahl's law; 
■ Touch Modules D1, C2, and B2

❑ Parallel Hardwares -- GPUs.  
❑ Introduction to CUDA programming
❑ Google Colab 
❑ Instruction Execution in GPUs

■ Techniques for extracting parallelism from sequential programs 
■ Compile-time parallelization 
■ Runtime parallelization 
■ Synchronization 

❑ Scheduling techniques; 
❑ Parallelization for cache performance; 
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Motivation

■ For many decades, the single core processors 
were popular
❑ Instruction-level parallelism
❑ Core clock frequency
❑ Moore’s law

■ Mid-to late-1990s - power wall
❑ Power constraints
❑ Heat dissipation

■ Multicore processors, accelerators, such as 
GPUs.
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Why GPUs?

■ Multicore processors
❑ Task level parallelism
❑ Graphics rendering is 

computationally 
expensive

❑ Not efficient for 
graphics applications
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Graphics Processing Units

■ The early GPU designs 
❑ Specialized for graphics 

processing only
❑ Exhibit SIMD execution
❑ Less programmable
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NVIDIA GeForce 256

Images Source: Internet

■ In 2007, fully 
programmable GPUs
❑ CUDA released
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Single-core CPU vs Multi-core vs GPU
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L2 Cache

Single-core CPU vs Multi-core vs GPU
Streaming Multiprocessor

Global Memory
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NVIDIA Volta GV100
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https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf



11

CPU vs GPU
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Chip to chip comparison of peak memory bandwidth in GB/s and peak double 
precision gigaflops for GPUs and CPUs since 2008. 

https://www.nextplatform.com/2019/07/10/a-decade-of-accelerated-computing-augurs-well-for-gpus
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GPU Applications

GPU
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Reference: https://www.nvidia.com/
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Programming for GPUs
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Programming Models

■ CUDA (Compute Unified Device Architecture)
❑ Supports NVIDIA GPUs
❑ Extension of C programming language
❑ Popular in academia
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Introduction to CUDA Programming
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Simple Example: Touch Module Example
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__global__ void Vector_Add(float a, float b, float c){
       /* Compute index i based on thread id */
       c[i] = a[i] + b[i];
}
int main() {

 h_a = malloc(..)//host array
 cudaMalloc(d_a,….) //device

  /* Initialize h_a, h_b, h_c */

 cudaMemcpy(d_a, h_a, cudaMemcpyHostToDevice) 
//Similarly do for d_b, and d_c
 Vector_Add<<<ThreadConfig>>> (d_a, d_b, d_c);

 cudaMemcpy(h_c, d_c, cudaMemcpyDeviceToHost) 
 process(h_c);
 cudaFree(d_a);cudaFree(d_b);
cudaFree(d_c);
 free(h_a);

}

CPU to GPU 
Data transfer

GPU to CPU
Data transfer

Invoke Kernel

Compute Kernel
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Threadblock configuration: Touch Module Example
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 Vector_Add<<<ThreadBlocks, Threads> (d_a);

■ Thread block configuration 
❑ User choice 
❑ Depends on problem size

■ Problem size = 32768 (1024 * 32)
❑ Threadblocks = 32, No of threads/thread block = 1024
❑ Threadblocks = 128, No of threads/thread block = 256

CUDA thread block occupancy: 
https://docs.nvidia.com/cuda/cuda-occupancy-calculator/index.ht
ml
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Demo using Colab on Touch based Example
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Evaluation

■ Evaluation scheme:
❑ Tierce exam-1: ~12.5%
❑ Tierce exam-2: ~12.5%
❑ Programming assignments (4-5): ~20% (D1 and C2 

Modules)  
■ CUDA Programming assignments: Similar to Matrix multiplication in 

Google Colab
❑ Projects: ~40% (B2 Module)

■ Ideas: Parallelizing several algorithms for GPUs using CUDA.
❑ Community detection
❑ Graph mining applications
❑ Deep learning
❑ SpMV and SPMM.

❑ Quiz: ~5%
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Thank You!
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